
LECTURE 16

Related Rates Continued

Continuing with the example last class, we restate the problem.

Example 1. A 15-foot ladder is resting against the wall. The bottom is initially10 feet away from the wall
and is being pushed towards the wall at a rate of 1

4 ft/sec. How fast is the top of the ladder moving up the
wall 12 seconds after we start pushing?

Solution. The ladder, vertical wall and the �oor form a right triangle. The length relationship here is via
Pythagoras. Denote �oor length and wall height x (t) and y (t) respectively. Then, we see that

x2 + y2 = 152

since the hypotenuse is always the same ladder, and thus of length 15. Note that both x and y are actually
x (t) and y (t), functions of time.

Now, we want to know how fast the ladder is moving up the wall 12 seconds after we start pushing, so
we want the rate of change of �wall height� y′ (12). Taking a derivative, we have

2xx′ + 2yy′ = 0 =⇒ x (t)x′ (t) + y (t) y′ (t) = 0.

We want to evaluate y′ (12) . We identify what we know here already

x (12) = 10− 1

4
× 12 = 7.

x′ (12) = −1

4

y (12) =
√
152 − 72 =

√
176 = 4

√
11.

Plugging back, we �nd

7×
(
−1

4

)
+ 4
√
11y′ (12) = 0 =⇒ y′ (12) =

7

4

1

4
√
11

=
7

16
√
11
≈ 0.1319 ft/sec

Example 2. (Involving angles and trigonometry) Two people are standing 50 ft apart on the x-axis. One
starts walking north at a rate such that the angle between them is changing at a rate of 0.01 rad/min, while
the other person stays put. At what rate is distance between the two people changing when θ = 0.5 radians?

Solution. The distance from the stationary person to the starting point of the other person is �xed at 50
ft. The distance between them at time t can be labeled as z (t), the length of the hypotenuse. Then, we
have the relationship

cos (θ (t)) =
50

z (t)
=⇒ sec (θ (t)) =

z (t)

50
.

We want dz
dt |θ=0.5. Taking a derivative with respect to t, we have

d

dt
(sec (θ (t))) =

1

50

d

dt
z (t)

=⇒ sec (θ (t)) tan (θ (t))
dθ

dt
=

1

50

dz

dt

So, θ = 0.5 can be plugged in here, while also we know dθ
dt = 0.01 is a constant (as given). It should be

positive because the angle is always increasing. Thus,

dz

dt
= 50 sec (0.5) tan (0.5) (0.01) ≈ 0.311 ft/min.

1



LECTURE 16 2

Derivatives of inverse Functions and Logarithms

Now, switching back to just doing derivatives, we now consider �rst the derivative of inverse functions.

Motivation of Inverse Functions

Why are inverse functions useful? Have you ever encountered them yet you did not notice? In fact, when
you are solving a quadratic equation, you used the notion of inverses already. Suppose we look for the zeros
of the function

f (x) = x2 + 3x+ 2.

For those who are keen, you will notice right away x = −2 and x = −1 are the zeros. If you can't factor
quickly, then the quadratic formula will also give you the answer,

x1,2 =
−3±

√
32 − 4 · 1 · 2
2

.

Note that your original equation is quadratic, and now the formula that gives the root involves square roots.
You de�nitely know that to undo a square, you take the square root, making these two operations inverses
of each other. So, a coincidence here for the quadratic formula?

What if the question is harder,

g (x) = x3 + 5x+ 1?

You are speci�cally looking for the x∗'s such that g (x∗) = 0. The function inverse undoes the original
function, that is,

g−1 (g (x)) = x.

Therefore, if you know the function inverse g−1 (x), then to �nd the zeros of g (x), you do

g−1 (g (x∗)) = g−1 (0) =⇒ x∗ = g−1 (0)

which means you just need to evaluate at x = 0 for the function g−1 (x) to get the zeros of g (x).

Derivative of an Inverse Function

Let's consider a simple function.

f (x) =
1

2
x+ 1,

where we �nd the inverse to be

f−1 (x) = 2x− 2.

(If you don't know how to �nd the inverse of a function, you should learn the following quickly. Take your
original function y = 1

2x+ 1, swap x and y and solve for y, i.e. x = 1
2y + 1 =⇒ y = 2x− 2. Now, you call

this y = f−1 (x). Same process for harder looking functions.)
Let's �nd the derivative of both functions.

f ′ (x) =
1

2
,
(
f−1 (x)

)′
= 2.

Hmm, reciprocal. Is this a coincidence?
Consider a di�erentiable function f (x) and a point on it (a, f (a)). The inverse f−1 (x) will take this

point to (f (a) , a). The slope at x = a for f (x) is f ′ (a). We just �learned� that the slope at the re�ected
point should be the reciprocal, that is, by writing b = f (a),(

f−1
)′
(b) =

1

f ′ (a)
=

1

f ′ (f−1 (b))
.

Great, this is getting more general, though for a speci�c point (a, f (a)). We want to show if this formula
holds for all points b, given that f is a di�erentiable function.

Theorem. If f is di�erentiable on some interval I, and f ′ is never zero on I, then f−1 is di�erentiable
everywhere on its domain (the range of f). Furthermore, given a point b in the domain of f−1, we have(

f−1
)′
(b) =

1

f ′ (f−1 (b))
.
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Proof. The �rst claim is nontrivial to prove (but easy to visualise � when you �ip a di�erentiable function
about the origin, you won't lose di�erentiability unless the original slope is 0 so now you have a vertical
slope).

We prove the second claim, the formula. We rely on the de�nition of the inverse function. By the chain
rule,

f
(
f−1 (x)

)
= x

=⇒ d

dx

(
f
(
f−1 (x)

))
= 1

=⇒ f ′
(
f−1 (x)

)
·
(
d

dx
f−1 (x)

)
= 1

=⇒ d

dx
f−1 (x) =

1

f ′ (f−1 (x))
.

�

Let's test our theory on functions with known inverses.

Example. Consider f (x) = x2 for x > 0 and thus f ′ (x) = 2x. We know its inverse f−1 (x) =
√
x for x > 0,

and thus also by power rule,
(
f−1

)′
(x) = 1

2
√
x
. Let's see if the above formula works.(

f−1
)′
(x) =

1

f ′ (f−1 (x))
=

1

2f−1 (x)
=

1

2
√
x
,

works!

A great advantage of the formula is that you don't have to �nd the explicit form of the inverse to �nd its
derivative at a point.

Example. Let f (x) = x3 − 2, x > 0. Find the value of df
−1

dx at x = 6 = f (2) without �nding a formula for

f−1 (x).

Solution. We want
(
f−1

)′
(6). By the theorem, it is equal to(

f−1
)′
(6) =

1

f ′ (f−1 (6))
.

So, we go on to �nd the two ingredients. First, f−1 (6) = 2. Second f ′ (x) = 3x2 =⇒ f ′ (2) = 3 · (2)2 = 12.
Therefore, (

f−1
)′
(6) =

1

f ′ (f−1 (6))
=

1

12
.


